skip to main content


Search for: All records

Creators/Authors contains: "Parker, Wesley G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The14C content of sedimentary organic matter (OM) and specific organic molecules provide valuable information on the source and age of OM stored in sediments, but these data are limited for tropical fluvial and lake sediments. We analyzed14C in bulk OM, palmitic acid (C16), and long‐chainn‐alkanoic acids (C24, C26, and C28), within fluvial and lake sediments in the catchment of Lake Izabal, a large tectonic lake basin in Guatemala. We combined these measurements with bulk and compound‐specific δ13C measurements, as well as sediment organic carbon to nitrogen (OC:N) ratios, to understand the source and age of sedimentary OM in different regions of the lake catchment. Most fatty acid and bulk OM samples were characterized by pre‐modern carbon, indicating important input of aged carbon with residence times of hundreds to thousands of years into sediments. We identified two mechanisms leading to aged carbon export to sediments. In the high‐relief and deforested Polochic catchment, older OM and fatty acids are associated with low % total organic carbon (TOC) and low OC:N, indicating aged OM associated with eroded mineral soil. In the smaller, low‐relief, and largely forested Oscuro catchment, old OM and fatty acids are associated with high %TOC and high OC:N ratios, indicating export of undegraded aged plant biomass from swamp peat. The age of bulk OM and fatty acids in Lake Izabal sediments is similar to the ages observed in fluvial sediments, implying that fluvial input of aged soil carbon makes an important contribution to lake sediment carbon reservoirs in this large tropical lake.

     
    more » « less
  2. null (Ed.)
  3. Characterizing the degree of disturbance in archaeological deposits is critically important for archaeologists assessing foraging strategies, environmental conditions, or behavior patterns of ancient human groups. Qualitative techniques (e.g. micromorphology analysis) have previously been applied to assess the degree of disturbance (age-mixing) in archaeological sites; however, quantitative dating of material in the sites provides a more robust assessment of potential age-mixing. Unfortunately, because of budget constraints, archaeologists are frequently forced to rely on few quantitative age dates for an assemblage, thus obfuscating the signal of age-mixing of the deposit. The development of an affordable and rapid carbonate-target accelerator mass spectrometry (AMS) radiocarbon ( 14 C) dating method provides a cost-effective way to retrieve more quantitative dates from carbonate material in archaeological assemblages to assess the degree of age-mixing in the deposit. This study tests this new technique and dates numerous harvested marine limpet shells from archaeological sites in the Canary Islands to determine whether there is multidecadal to multicentennial age-mixing. A total of 58 shells retrieved from six sites and three islands yielded uncalibrated radiocarbon ages ranging from 2265 ± 40 to 765 ± 35 BP, coinciding with the time of prehistoric human occupation in these islands. While most shells from the same stratum showed statistically equivalent ages, in some cases we detected age ranges that exceeded the imprecisions from analytical errors. This investigation is one of the first to quantitatively illustrate that shells retrieved from depth intervals without evident stratigraphic disturbance do not always contain contemporaneous remains and, therefore, dating each specimen is valuable for developing further paleoclimatic and paleoanthropological inferences. This study presents the first report of carbonate-target 14 C ages from archaeological shell middens, and suggests that this novel radiocarbon methodology can be applied to these sites, thus allowing the generation of a more comprehensive chronology. 
    more » « less
  4. null (Ed.)
    ABSTRACT The direct carbonate procedure for accelerator mass spectrometry radiocarbon (AMS 14 C) dating of submilligram samples of biogenic carbonate without graphitization is becoming widely used in a variety of studies. We compare the results of 153 paired direct carbonate and standard graphite 14 C determinations on single specimens of an assortment of biogenic carbonates. A reduced major axis regression shows a strong relationship between direct carbonate and graphite percent Modern Carbon (pMC) values (m = 0.996; 95% CI [0.991–1.001]). An analysis of differences and a 95% confidence interval on pMC values reveals that there is no significant difference between direct carbonate and graphite pMC values for 76% of analyzed specimens, although variation in direct carbonate pMC is underestimated. The difference between the two methods is typically within 2 pMC, with 61% of direct carbonate pMC measurements being higher than their paired graphite counterpart. Of the 36 specimens that did yield significant differences, all but three missed the 95% significance threshold by 1.2 pMC or less. These results show that direct carbonate 14 C dating of biogenic carbonates is a cost-effective and efficient complement to standard graphite 14 C dating. 
    more » « less